THE PROBLEM OF A DIHEDRAL PISTON

V. M. Teshukov

The problem of the plane nonstationary motion of a gas behind a dihedral piston is considered.
The problem is linearized on the assumption that the piston angle « is small, The mixedprob-
lems and the Goursat problem are solved for the linearized double-wave equation in the
region of hyperbolicity and then the mixed boundary value problem is solved in the region

of ellipticity, The solutions are obtained in elementary functions and quadratures.

The problem in question was investigated in the plane of the hodograph in [1] and [2]. In [1] the case
in which the velocity of the piston is sufficiently large and the gas flows into a vacuum was considered. In
[2] a numerical solution of the problem was obtained in the region of hyperbolicity of the double wave
equation.

1. Formulation of the Problem and Basic Relations

At time t= 0 let a polytropic gas with equation of state p = azpy (p is pressure, v is the adiabatic
exponent, a? = const) be at rest within the dihedral angle formed by two intersecting planes P, and B,. We
consider the problem of finding the nonstationary plane gas flow as the dihedral angle is withdrawn at an
counstant velocity U, directed along the bisectrix of the angle between the planes P;and Py, It is assumed
that this angle is less then 7

We seek a solution in the class of conical flows. If it is assumed that there are no shock waves, these
flows will be isentropic and potential. The unknown velocity components u, and v and the speed of sound ¢
will depend on the two independent variables ¢§ =x/t, n = y/t, where x, and y are the Cartesian coordinates
of the planeand t is time, At small piston angles o shock waves with an intensity of the order of ¢ may
occur, but in the linear approximation the motion may be assumed isentropic, since the entropy jump must
be of order o3,

We consider conical, irrotational, and isentropic flows of a polytropic gas. We introduce the in-
dependent variables ¢ =x/t, n = y/t and represent the unknown functions in the form

U= E + U (gv n)7 v = Tl + V(g’ 7\), p = P (gv n)7 p - R (gy n) (1"1)
If we introduce the potential in the form
g = U, @y =V (1.2)

the basic equations of two-dimensional gasdynamics lead to the following quasi-linear equation describing
the potential conical flows:

(U% — Oz + 1) -+ 2UVey + (V2 — CH(@ny + 1) =0 (1.3)
where
C=01—ylp+ Y (U + V3] (1.4)

Relation (1.4) is an analog of the Bernoulli integral, We establish the coordinate system in the flow
plane, directing the x~axis along the axis of piston symmetry and the y-axis at right angles to it, so that at
time t = 0 the coordinate origin coincides with the vertex of the piston angle Q. The picture of motion in
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the plane £n coincides with that in the xy-plane at time t = (Fig. 1). At large |n| the motion is an
undisturbed simple Riemann wave

= 2 T—1 . _ R _
C‘(m0°+ﬁ7§1>' Ucosa —Vsina=—C Usina + Vcosa = —my, L, e M, (1.5)

and a constant flow

C=C;=Cy+ Yyly — 1)U, cosa, Ucosa —Vsina = Uycosa — §;
Usina +V cosa = — 7, e M, (1.6)
(Up<< 0, § = Ecosa — sina, 1, = Esina + qcosa,
M, = [Cy+ Yoly 4+ 1) Ugcosa, €y, My = [U, cosa, Cy-+1/5(y +14)Uycos al

Here, C, is the speed of sound in the quiescent gas and U is the piston velocity; by virtue of flow
symmetry the equations are given for n = 0 only. Here and in what follows it is assumed that vy = 3; the
solution fory = 3 is similarly constructed.

A flow of the double-wave type is sought in the neighborhood of the vertex Q. The simple wave and the
constant flow adjoin the double wave along the characteristics BE and BF starting from point B (C, sec e, 0),
The equation of the characteristics for Eq. (1.3) has the form:

(U2 — C? dn? — 2UVdEdn + (V2 — CBdEE = 0 (1.7)

Using the known values of U, V, and C along BE, we integrate Eq. (1.7); as a result we obtain the
equation of segment BD

Y-8 Y41
wt=—IEr ot (e + I o o, e (L.8)
and the equation of segment DE
1T AN A 1
m= L(th @+ j{—_§> RN R cl} (& — Ugcosat — Cy) + T (L.9)
LeM,

where C is given in (1.5) and the constant T = 1, at point D,

Thus, in exact formulation the problem reduces to finding in a known region the solution ¢ of Eq. (1.3),
which takes the value ¢, on the boundary characteristics BE and BF and satisfies the impermeability condi-
tion gy ny + @y, = 0 on the piston line EQF (n = (n;, n,) is the normal to the piston line). The known poten-
tial ¢, is given by the equation

o= —Ym® =P - C2P (1 — ), R e M
o = —Ya* — Yo(Ucos — £ +C2 (1 — )Y, &L &M, (1.10)

In the exact formulation the problem is complicated by the fact that the quasi-linear equation (1.3) is
of the mixed type and region BEQF contains regions of both hyperbolicity and ellipticity of the equation.

Considering the case of small angles o, we set
P =Py + (b= o la—y) (L.11)

Here, ¥ 4 is the potential of the undisturbed motion and ¥ is the unknown potential of the disburbances.
Substituting (1.11) into (1.3) and discarding terms containing the second and higher powers of ¢, we obtain
the equations for ¢

_2 x—1 . Ll (2 ik A
(73 Cot+Er &) + 5 (w — (Fg Co+ L1 8 )
2 T—1 .\ T—1 T—1

_<7+1 Cot o §>¢5_ A TT T v =0
Up+ C<ESC
(U —8)F — Cy?) Pzr — 2(Ug — E) Mbzy + (N2 — C1%) Pin = 0

Uy <ES Uy + G

(1.12)

(1.13)
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Equation (1.13) is of the mixed type, its characteristics in the region of hyperbolicity are tangents
to the line of degeneracy given by the equation

(5 — U+ n*=C (1.14)

Here and in what follows C, is the speed of sound in the constant flow at @ =0 (see (1.6). The
characteristic MH (Fig. 2) of Eq. (1.12) and (1.13) corresponding to BE is given by Eqgs, (1.8) and (1.9) with
o = 0, Transfer of the conditions from characteristic BE to characteristic MH and the impermeability
condition from line EQ to HA leads to the following problem for Eqgs. (1.12) and (1.13): to find the solution
¢ satisfying the conditions

Yun = 200 + DHCo — 8, Uy + 6 <<ES G (1,15)
Ylwg = —Ugm, U <ECUy+ G

and the condition ¢, =0 at £ =U; The region of definition of the solution is divided into four subregions.
In region 1, bounded by the characteristic MN and the segment ML of the £ -axis, the mixed problem for
Eq. (1.12) is solved. After solving this problem we obtain a Goursat problem in region 2 bounded by the
characteristics LN and NK (NH) (Fig. 2a and b). In region 3 the mixed problem for Eq. (1.13) is solved,
and then, when the solution has been found in the regions of hyperbolicity 1, 2, and 3, the mixed boundary
value problem for (1.13) is solved in region 4, the function ¢ being given on a line of degeneracy of the
{1.14) type, which enters into the boundary of the region. The form of region 3 varies with the piston velo-
city U, and the adiabatic exponent vy, At

y

region 3 degenerates into a point, since the characteristic NH is perpendicular to the line & = U, At
Uy < Ux region 3 is bounded by a characteristic of the second family starting from the point H and by the
line ¢ = Up. In what follows we distinguish three cases: U, > U, (Fig, 2a), b) Uy < U, (Fig. 2b), ¢) Up=Uy.

2, Solution in Region 1

If Eq. (1.12) is reduced to the characteristic variables

!

Y-3
2 TN T2 —1 \
z =t (2 Co+ 1 E) R e e e S (2.1)

Y3
o+t

_ 2 T—1 Ny,
Ty <T+1 Cot 571 E)

then the equation obtained

‘ Y g—Ys+2r N 1 T—1 1 . 2.2
e e e R = Ralies Eree AR (2.2

can be integrated in quadratures. Setting
1
g :%‘_‘_Z(zﬂ—r) P (2.3)

we obtain the ordinary differential equation for g:

1 (=t

3 i §=0 (2.4)

& —
Solving Eq, (2.3) and (2.4) successively, we obtain the general solution of Eq. {1.12):
-1 2

b= ({311 T\)(H)S (éf):?/z +h(r)> Vire (2.5)

@

401



Here, f and h are arbitrary functions; the variables z and T are

& expressed in terms of £ and 1 in accordance with (2,1), The character-
’ istic MN is given by the equation
Ly x-3)
Z=ay= 1:’:3 CO(Y—L)
f q £
B 770 P, Therefore in (2.5) it is convenient to take the constant ay = a, Satis-
Fig. 1 fying condition (1.15) on MN, we determine
2 3—1 Ve [3—1
— - (¥-3) -
h@ = 27 (G (B o)) (3 (2.6)

w2 "
I d W From the symmetry condition z,bn =0 at n = 0 we obtain the Abel

(L integral equation for f:

4 K

0

}\ - ) ( (G )]
4 a @de 1 31 N3 3 —1 A\

g A = — Co— ( T (—— T (2.7

/2 y—11\70 Y +1 Y+ 1 °
Fig. 2 S T+ ¥ > NrF1 )

Inverting the integral operator on the right-hand side of (2.7) and substituting the result and the
expression for h(7) (2.6) into (2.5), we obtain the form of ¥ in region 1:

-1 2 (-1

§ = — ﬂ(Yz_i <3—r )(Y 3>§ ( (7—3C>(Y 3)(\ = ?1) >J/2d§ (2.8)

(y-1)

42 Vm(co_(tlff?’)(b‘—y )

T—1 XA T+1
Then, using the value obtained for the potential ¢ on characteristic LN, we solve the problem in
region 2. We denote

P (n/Cy) =% (Uy + Cym) (2.9)

3. Solution of the Problem in Region 2

The data on characteristic MH have a discontinuity of the first derivative at point N, as follows from
(1.15). Therefore, along characteristic LN after solution of the Goursat problem in region 2 the derivative
of ¢¢ will have a discontinuity of order a.

We go over to polar coordinates in Eq. (1.13);

E—U,=rcos0, 1 = rsin 0

(3.1)
7‘2("2 - Clz)'lprr - Cl2 Yop — 012 rp, = 0
This equation admits a three-parameter group of transformations and, as follows from the results of
[3], reduces to the Euler-Poisson equation, Applying the algorithm described in [3], we make the following
substitutions:
0 4 arceos(C1/r)

8 —arccos(Ca/r) %

s=1tg 3 roa=te 2 R (3.2)
0 < arccos(Cy [ 1) << Yo
Equation (3.2) reduces to the Euler-Poisson equation
1
Kor T 5= (s — %a) =0 (8.3)

The general solution of Eq. (3.3) is easily written out, and from (3.2) we obtain the general solution of
Eq. (1.13):

=120 (@ + o () + 5y (0 (@) — 01 (5) (3.4)
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Here, w and w; are arbitrary functions and the variables s and q are expressed in terms of £ and 7,

Knowing the general solution, we can solve the Goursat problem in region 2. In the sq plane the
characteristics LN and NK(MH), on which the data are given, are given by the equations g = 0 and

TR = e
I At Iy -1) -0\
sﬁso_(—s_q, G )

respectively, On these characteristics the function ¢ is known:

so ¢

1P ]s=sa = - Uoﬂ - UOCIW » "‘]J!q=0 - 1[’1 (‘9)

From the data on the characteristics the functions w and w; are determined as the solutions of

ordinary linear differential equations. Let us determine the arbitrariness in the determination of w and Wy,
if

@ (g) = bo@® + byq + by, o1 (8) = bos® -+ bys + by
then the function ¥ = 0. Consequently, without loss of generality, we may assume that

©0) =0, @ (0)=0, o(s)=0
Satisfying the conditions on the characteristics, we determine & and w;y:

X - UgC
a@=e{nOrea og=—"0g (8.5)
As follows from the first of Eq. (3.5) and expression (2.9)for ¢4, the derivative w,"(s) = 0 (In s);
therefore the derivative of ¥ y 18 unbounded at point L, and Up =0 (In 8); however, the derivative of Ug is
bounded everywhere in region 2, The unboundedness of the derivatives of the solution of the Goursat prob-

lem at the points of tangency of the characteristics and the line of degeneracy is the known fact in the theory
of equations of mixed type.

Then, in case c it is possible to proceed to solve the problem in region 4; in cases a and b the prob-
lem in region 3 is solved.

4. Solution of the Problem in Region 3

Case a. Here we encounter the following mixed problem: the function ¢ is given on characteristic KH
and ¢ =0 at ¢ = Uy Invariables s and q these conditions take the form

WP lg=se = — Uy ::_—TS(; R (4.1)

Without loss of generality, we may assume
o) =0 o () =0, o {d/s)=Uli/5
From the condition on the characteristic KH we determine
@y (s) = UCys (4.2)
Then, satisfying the second of conditions (4.1) on line GH
M (U= ¢)e" (9) + g’ (@) — 0 (9 =0
we determine w (q) =0, Thus, the potential ¢ in region 3 is given by the equation

P = —Um (4.3)

Case b. The data on characteristic KH, given by the equation q = qq = 1/s0, are obtained after solving
the problem in region 2. Let the functions w,% and @° be obtained in solving the problem in region 2. With-
out loss of generality, we may assume that the functions w and w in region 3 are such that

o (q) = 0° (¢) = —U148, o’ (¢1) = oY (1) = —2UL14° (4.4)
oy (5o) = @,° {s) = 0
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Since the function w,? satisfies the equation along the characteristic, from which w, must be deter~
mined,by virtue of the uniqueness theorem for linear ordinary equations

s

o (5) = 0 (s) = S‘ ¥i (§) 5 dL (4.5)

So

The second of conditions (4.1) gives a second-order equation for determining w(q):

1 1 11
) gl (5)—a(3)

1 2 v ’ — qu —1 ” 1

7 (1 —¢)0"(@) + 90 (@) — (@) = 5 @ <—>+
The general solution of the corresponding homogeneous equation has the form

o =Dg-+D,(¢ —1)
The function
o=—¢gao (/g
is a particular solution of the inhomogeneous equation,

Determining the constants Dy and Dy from (4.4), we find

1/q
0 (@) = UsCag — Uolata (@ +1) — § b Q)52 (4.6)

Thus, the solution of the problem has been found everywhere in the regions of hyperbolicity of the
linearized eguations.

5, Solution of the Problem in Region 4

After solving the problems in the region of hyperbolicity of Eq. (1.13) we must turn to the mixed
boundary value problem in the region of ellipticity. The potential ¢ can be determined in region 4 if it is
known on the semicircle (1.14), and if the derivative ¢ =U; is given on the diameter y; = 0. As a result
of the uniqueness of the solution of this problem it is sufficient to solve the Dirichlet problem in a circle
with Dirichlet data continued evenly onto the lower semicircle. Here, too, it is convenient to go over to
the coordinates s, k, which will be complex in region 4:

s =17, s=A+ ip

If x is the solution of Eq. (3.3), then the potential ¥ in region 4 is related with the function ¥ by the

expression

_ %
P = Re—————sq_i_1

Let 0= Re x ; then from (3.3) there follows the equationfor ¢

92 02

2 / o
As — -0, =0 '\A=5,§+-5—M) (5.1)

The solution of this equation is expressed in terms of the arbitrary harmonic function F of the
variables A and p:
c=F—ukf,

As a result of transformation (3.2) the circle (¢ —Up? + n? = C{? in the plane £n goes over into the
half-plane p =0. The circle (1.14) is mapped into the axis p = ¢ so that the upper semicircle goes over into
the segment [—1, 1] of the A-axis. The continuation of the Dirichlet data

Yoo = Jo (), o M) << o0

onto the entire axis is realized in accordance with the equation

fo) =71 ), R >1
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The potential ¥ is expressed in terms of the harmonic function F
1
V= (_Mz—W(F—HFp) (5.2)
Therefore the starting boundary value problem reduces to the following problem for the function F
harmonic in the half-plane p= 0
Flco = (1 + W), (), [FI<<A2sP,  |s|—>o (4, = const) (5.3)

The latter inequality follows from the requirement that ¢ be bounded. The data on the axis u = 0 are
expressed in terms of the functions w and w; obtained in solving the problems in regions 2 and 3, because

M) =@M —am)  O<AKD, M =1(—h), (5.4)

fo(M) =/fo (A7)
It follows from (5.4) and (3.5) that (1 + A?%) £;(A) can be represented as follows:

(U4 2o A) = f1 (A) + A2y (0) + Yo" (0) In (A* + 1)
Here, f;(A) is a function bounded on the entire A -axis.

The solution of problem (5.3) is the function

GO )00 — 1) ) 1n (2 (1)) (5.5)

PO =4

ez g

8

As it is easy to establish, this solution is unique correct to unimportant terms of the form by + dy .

Thus, the linear problem has been completely solved. The equations obtained make it possible to
calculate the physical quantities u, v, and ¢ in the double-wave region, At large absolute piston velocities
Uy a vacuum zone is formed in the neighborhood of the vertex of the piston angle Q. Then in regions 3 and
4 the solution obtained will not be applicable, since in this case it would be necessary to solve the problem
with a free boundary. The critical piston velocity Uy at which separation of the gas first takes place is
determined from the equation

C? + ol — 0 (ve, 0) =0
At lesser velocities the solution obtained describes the motion of the gas in first approximation,

The author thanks L, V. Ovsyannikov for his interest and helpful advice.
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