
THE PROBLEM OF A DIHEDRAL PISTON 

V. M. Teshukov 

The problem of the plane nonstationary motion of a gas behind a dihedralpiston is considered. 
The problem is l inear ized on the assumption that the piston angle ~ is small~ T h e m i x e d p r o b -  
lems and the Goursat  problem are  solved for the l inearized double-wave equation in the 
region of hyperbolici ty and then the mixed boundary value problem is solved in the region 
of ellipticity. The solutions are  obtained in e lementary functions and quadratures.  

The problem in question was investigated in the plane of the hodograph in [1] and [2]. In [1] the case  
in which the velocity of the piston is sufficiently large and the gas flows into a vacuum was considered.  In 
[2] a nmnerical  solution of the problem was obtained in the region of hyperbolici ty of the double wave 
equation~ 

1. F o r m u l a t i o n  o f  t h e  P r o b l e m  a n d  B a s i c  R e l a t i o n s  

At t ime t = 0 let a polytropic gas with equation of state p = a2p ~/ (p is p ressure ,  V is the adiabatic 
exponent, a 2 = const) be at r e s t  within the dihedral angle formed by two intersect ing planes P1 and P2 o We 
consider  the problem of finding the nonstationary plane gas flow as the dihedral angle is withdrawn at an 
constant veloci ty  U 0 directed along the bisectr ix  of the angle between the planes PI and P2. It is assumed 
that this angle is less then 

We seek a solution in the c lass  of conical flows. If it is assumed that there are  no shock waves, these 
flows will be isentropic and potential. The unknown velocity components u, and v and the speed of sound c 
will depend on the two independent var iables  ~ = x/ t ,  ~ = y/ t ,  where x, and y are  the Cartesian coordinates 
of the planeand t is t ime. At small  piston angles ~ shock waves with an intensity of the order  of a may 
occur ,  but in the linear approximation the motion may be assumed isentropic,  since the entropy jump must  
be of order  a 3. 

We consider  conical, i rrotat ional ,  and isentropic flows of a polytropic gas. We introduce the in-  
dependent var iables  ~ = x/ t ,  V = y / t  and represent  the unknown functions in the form 

= ~ +  U(~, ~l), V = ~ l + V ( ~ ,  ~1), P = P ( ~ ,  ~l), p ----B(~, n) (1.1) 

If we introduce the potential in the form 

q~ = U, T~ = V (1.2) 

the basic equations of two-dimensional  gasdynamics  lead to the following quasi - l inear  equation describing 
the  potential conical flows: 

(U 2 -- C2)(qD~ ~- l) -~ 2UVcp~ ~ (V ~ --  C~)(~  + i) = 0 (1.3) 

where 

C a = (t --  7)[~ + 1/~ (U 2 + V~)] (lo4) 

Relation (1.4) is an analog of the Bernoull i  integral.  We establish the coordinate sys tem in the flow 
plane, direct ing the x -ax is  along the axis of piston symmet ry  and the y-axis  at right angles to it, so that at 
t ime t = 0 the coordinate origin coincides with the vertex of the piston angle Q. The picture of motion in 
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the plane }~ co inc ides  with tha t  in the x y - p l a n e  at t ime  t = l (Fig.  1). At  l a rge  [~ [ the mot ion  is an 
und is tu rbed  s imple  R i e m a nn  wave 

2 T--1 ) 
C =  - ~ - - ~ - C o + u  , U c o s o ; - - V s i n c r  U s i n ~ + V c o s a ~ - - ~ h ,  ~ M ~  (1~ 

and a cons tan t  f low 

C = C 1 = C  O + 1/2(y-- t )U ocoscz, U c o s a - - V s i n a  = U o c o s a -  ~1 

U sin a + V cosa = - -  ~h, ~1 ~ M2 (1.6) 
(U o <  0, ~t ~ ~ cos ~ --  ~t sin a, ~h = ~s in~ + 1] cosa, 

~rV/1 = [C o + ~/~(7 + t) Uocoscz , Co], Mz = [U o eosa, Co+X/,(y + t  )U0cos M 

Here ,  C o is the speed  of  sound in the qu iescen t  gas  and U 0 is the p is ton  ve loc i ty ;  by v i r t ue  of  flow 
s y m m e t r y  the equat ions  a r e  g iven for  ~? >- 0 only. H e r e  and in what  fol lows it is  a s s u m e d  that  Y r 3; the 
solut ion f o r t  = 3 is s i m i l a r l y  cons t ruc ted .  

A flow of the double -wave  type is sought  in the ne ighborhood  of  the  ve r t ex  Q. The  s imp le  wave and the 
c o n s t a n t  flow adjoin the double wave along the c h a r a c t e r i s t i c s  BE and B F  s t a r t ing  f r o m  point  B (C O sec  a, 0). 
The equat ion of  the  c h a r a c t e r i s t i c s  fo r  Eq. (1.3) has  the f o r m :  

(U 2 - -  C ~) d~] ~ - -  2UVd~d~1%- (V ~ - -  C2)d~ ~ -= 0 (1.7) 

Using  the known va lues  of U, V, and C along BE,  we in t eg ra te  Eq. (L7) ;  as  a r e s u l t  we obtain the 
equat ion of  s egmen t  BD 

"~-3 ~+i 

(1.s) 
~ - 32  

and the equat ion of s egmen t  DE 

"~-3 2 

T h = ~ -  t g ~ a _ , r _ 3 j C 0  C1 - - 2  C1 ( ~ t - - U o c o s a - - C 1 )  } -T  T--3 (1.9) 
~i ~ M~ 

where C is given in (1.5) and the constant T = 771 at point D~ 

Thus, in exact formulation the problem reduces to finding in a known region the solution r of Eq. (1.3), 
which takes the value ~ on the boundary characteristics BE and BF and satisfies the impermeability condi- 
tion gown I + go~Tn 2 0 on the piston line EQF (n - (nl, n 2) is the normal to the piston line). The known poten- 
tial <o 0 xs given by the equation 

% = - l h n / -  '/2c ~ + c ~ (I - ~)-i, ~ ~ MI 
% = _1/2~h2 _ ~/2(Uocos a _ ~1)2 + C2 (1 --  ?)-~, ~ ~ M2 (1.10) 

In the  exac t  fo rmula t ion  the p rob l e m  is compl i ca t ed  by the fact  that  the q u a s i - l i n e a r  equat ion  (1.3) is 
of  the mixed  type  and reg ion  B E Q F  conta ins  r e g i o n s  of both hype rbo l i c i t y  and e l l ip t ic i ty  of  the equation. 

Cons ide r ing  the c a s e  of  sma l l  angles  ~, we se t  

(p = % + a~ (%= (PoI~=0) (1.11) 

Here ,  r 0 is the potent ia l  of  the undis turbed  mot ion  and r is the unknown potent ia l  o f  the  d i sburbances .  
Subst i tut ing (1.11) into (1.3) and d i sca rd ing  t e r m s  containing the second  and h igher  p o w e r s  of ~,  we obtain  
the equat ions  for  r 

�9 2 " r - - t  

(1.12) 
U0 + C1 < ~ ~ Co 

( ( u o  - ~)~ - c r  ~ :  - 2 (Uo  - ~) n % ~  + (n ~ - c~  2) %~ = o 

U0 ~ ~ ~ U0 -4- Ct (1.13) 
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Equation (1.13) is of the mixed type, its charac te r i s t i c s  in the region of hyperbolici ty are tangents 
to the line of degeneracy given by the equation 

(~ - -  U0) ~ § n u = C~ e ( 1 . 1 4 )  

Here  and in what follows C 1 is the speed of sound in the constant flow at (~ = 0 (see (1.6). The 
charac te r i s t i c  IVIH (Fig. 2) of Eq. (1.12) and (1~ corresponding to BE is given by Eqs. (1.8) and (1.9) with 

= 0. Trans fe r  of the conditions f rom charac te r i s t ic  BE to charac te r i s t i c  MH and the impermeabi l i ty  
condition from line EQ to HA leads to the following problem for Eqs~ (1.12) and (1.13): to find the solution 

sat isfying the conditions 

r = 2(~ + ~)-~(c0 - ~)~, Uo § G < ~ ~ c0 (1.15) 

and the condition. r = 0 at f = U0o The region of definition of the solution is divided into four subregions. 
In region 1, bounded by the charac te r i s t i c  MN and the segment ML of the ~ -axis, the mixed problem for 
Eq~ (1.12) is soived. After solving this problem we obtain a Goursat  problem in region 2 bounded by the 
cha rac te r i s t i c s  LN and NK (NH) (Fig. 2a and b). In region 3 the mixed problem for Eq. (1.13) is solved, 
and then, when the solution has been found in the regions of hyperbolici ty 1, 2, and 3, the mixed boundary 
value problem for (1.13) is solved in region 4, the function ~ being given on a line of degeneracy of the 
(1.14) type, which enters  into the boundary of the region. The form of region 3 var ies  with the piston ve lo -  
ci ty U 0 and the adiabatic exponent 3+. At 

" ( - I  

2C0 11 U0 = U. : _{%~_1 ((2 ~" -- t ~VT- 

region 3 degenerates  into a point, since the charac te r i s t i c  NH is perpendicular  to the line } = U 0. At 
U 0 < U .  region 3 is bounded by a charac te r i s t i c  of the second family start ing from the point H and by the 
line } = U 0. In what follows we distinguish three cases :  U 0 > U .  (Fig. 2a), b) U 0 < U,  (Fig. 2b), c)U0=U , .  

2.  S o l u t i o n  in  R e g i o n  1 

If Eqo (1.12) is reduced to the charac te r i s t i c  var iables  

2 ~ ( - - t  ~ ~-~ , X + I  / 2 C ~ - - t  ~)T2- ( 2 o l )  ( Co+T rq 
/ 

Y 3 

~ -  ~ - 3  \TT-~-G+ ~-+T~--~ ~) 

then the equation obtained 

t (1" - -  1) z + 2v 
~ 7--3 ~(~§ G 

t ~ - - I  I ( 2 . 2 )  
2(z+~) ~:@ ~--3 2V(ZTT) ~ = 0  

can be integrated in quadratures ,  Setting 

1 
g = ~z 2 (z + T) ~ (2.3) 

we obtain the ord inary  differential equation for g: 

t (~ -- t)|z § 2~ 
g~" ~'--3 (z§ g = 0  

Solving Eqo (2.3) and (2.4) successively ,  we obtain the general  solution of Eq. (1.12): 

(2.4) 

( '~-1)  z 

a l  

(2.5) 
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Fig. i 

t Y t i b Y 

o ~ ~  o 
Fig. 2 

Here ,  f and h a r e  a r b i t r a r y  funct ions;  the v a r i a b l e s  z and T a r e  
e x p r e s s e d  in t e r m s  of ~ and ~ in a c c o r d a n c e  with (2.1). The  c h a r a c t e r -  
is t ic  MN is g iven by the equat ion 

(~-3) 

z =  a 0 =  ~ ' ~ o o  (~-0 

T h e r e f o r e  in (2.5) it is convenient  to take  the cons tan t  a t = a 0. Sa t i s -  
fying condi t ion (1.15) on ~ N ,  we d e t e r m i n e  

<(-~-1 ) 

3 - - ' y  ' - -  3 - - 7  ' h , ' :  ' _ ,, (2.6) 

F r o m  the  s y m m e t r y  condi t ion SV = 0 at 77 = 0 we obta in  the Abel  
in tegra l  equation for  f :  

__~ (Y 1) 

l ]' (~) d~ __ i (Co '3-- '~ ~(Y-a), / 3 - -T  ) (2.7) (: +,~),/~ ,~ ~ - (-f-4--r '~,J ) t , - f%~ ~' -,/~ 
ao 

Inver t ing  the in tegra l  o p e r a t o r  on the r i g h t - h a n d  s ide  o f  (2.7) and subst i tu t ing the r e s u l t  and the 
e x p r e s s i o n  for  h (7) (2.6) into (2.5), we obtain the f o r m  of r in r e g i o n  1: 

(y-l) z (v-') 
2 f \ 3  --~F V - - ~ - / , ,  [ 7 - 3  ~\(v-3)[~-3 \ (2.8) 

- ~ ~ \ ~ o  - L~-4-~ ~) t ~  
ao 

(~'-1) 
~_ ~z~+t~(C  ~ [ 3 - - T  .~'\(-Tz~-a)'f3--T T) '/~ 

Then,  using the va lue  obta ined  for  the potent ia l  r on c h a r a c t e r i s t i c  LN, we solve  the  p r o b l e m  in 
r e g i o n  2. We denote 

~Pl (~l / C1) = ~p (Uo -k C1jI) (2 .9)  

3 .  S o l u t i o n  o f  t h e  P r o b l e m  i n  R e g i o n  2 

The  data  on c h a r a c t e r i s t i c  1VIH have  a d iscont inui ty  of  the f i r s t  de r iva t ive  at  point  N, as  fol lows f r o m  
(1.15). T h e r e f o r e ,  along c h a r a c t e r i s t i c  LN af te r  solut ion of the G o u r s a t  p r o b l e m  in r eg ion  2 the de r iva t ive  
of  r will  have  a d iscont inui ty  o f  o r d e r  a .  

We go o v e r  to po la r  c oo rd i na t e s  in Eq. (1.13); 

- -  U o = rcosO, ~1 = rs inO 

r2(r ~ - -  C 1 ~ ) ~  - -  C12 ~eo - -  C1 ~ rr = 0 
(3.1) 

This  equat ion admi t s  a t h r e e - p a r a m e t e r  group of t r a n s f o r m a t i o n s  and, as  fol lows f r o m  the  r e s u l t s  of  
[3], r e d u c e s  to the E u l e r - P o i s s o n  equation.  Applying the a lgo r i t hm d e s c r i b e d  in [3], we m a k e  the fol lowing 
subs t i tu t ions :  

s = tg 0 + arc cos2 (C1/r) , q = t g  0 -- arc cos2 (C1/r) ' ~ =  sq+iX 

0 -~ arc cos(C1 / r) < 1/,~ 
(302) 

Equat ion (3.2) r e d u c e s  to the E u l e r - P o i s s o n  equat ion 
i %,~ -~ ~ (Xs - -  ~r = 0 (3.3)  

The gene ra l  so lut ion of  Eq. (3.3) is e a s i l y  wr i t t en  out, and f r o m  (3.2) we obtain the g e n e r a l  solut ion of  
Eq. (1.13): 

s - - q  2 
~P = ~ (o)' (q) + o)1' (s)) + ~ (o) (q) --  o)1 (s)) (3.4) 
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Here, r and w I are arbitrary functions and the variables s and q are expressed in terms of ~ and ~?. 

Knowing the general solution, we can solve the Goursat problem in region 2. In the sq plane the 

characteristics LN and NK(MH), on which the data are given, are given by the equations q = 0 and 

(-~-3) (~ 3) 
/ T + t  r7 + 1  t., r i (~-1) 

s = s~ = l ' ~ 7  3 - -7  )% 

r e s p e c t i v e l y .  On t h e s e  c h a r a c t e r i s t i c s  t he  func t ion  r i s  known: 

] . . . .  = - -  Uo~ = - -  U C ,~o+q 0 1.~0q + 1' ~P lq=o = r (s) 

F r o m  t h e  d a t a  o n  t h e  c h a r a c t e r i s t i c s  t h e  f u n c t i o n s  w a n d  w 1 a r e  d e t e r m i n e d  a s  t h e  s o l u t i o n s  o f  

o r d i n a r y  l i n e a r  d i f f e r e n t i a l  equa t i ons .  L e t  us d e t e r m i n e  the  a r b i t r a r i n e s s  in the  d e t e r m i n a t i o n  of  w and w 1. 
I f  

co (q) = boq 2 + biq + b2, o3 i (s) = bo se + his + b 2 

then  the  funct ion  r = 0. Consequen t ly ,  wi thout  l o s s  o f  g e n e r a l i t y ,  we m a y  a s s u m e  tha t  

~ o ( 0 ) = 0 ,  ~o~(0)=0 ,  ~ o l ( s 0 ) = 0  

S a t i s f y i n g  the  cond i t i ons  on the  c h a r a c t e r i s t i c s ,  we d e t e r m i n e  oJ and ~1: 

o)1 (tO = s 2 ~ ~1 (~) ~-~ d L  o) (q) - UoCl~o q~ (305) 
so 

A s  fo l lows  f r o m  the f i r s t  of Eq. (3.5) and  e x p r e s s i o n  (2 .9) for  r the  d e r i v a t i v e  wl"  (s) = 0 (In s); 
t h e r e f o r e  the  d e r i v a t i v e  of r r i s  unbounded at  po in t  L, and r  = 0 ( l n s ) ;  howeve r ,  t he  d e r i v a t i v e  of  r i s  
bounded  e v e r y w h e r e  in r e g i o n  2. The  unboundedness  of  the  d e r i v a t i v e s  o f  the  so lu t ion  of the  G o u r s a t  p r o b -  
l e m  a t  the  po in t s  of  t a n g e n c y  of the  c h a r a c t e r i s t i c s  and  the l ine  of d e g e n e r a c y  i s  the  known fac t  in the  t h e o r y  
of  equa t i ons  o f  m i x e d  type .  

Then ,  in c a s e  c i t  is  p o s s i b l e  to p r o c e e d  to s o l v e  the  p r o b l e m  in r e g i o n  4; in c a s e s  a and b t he  p r o b -  
l e m  in region 3 is solved. 

4. S o l u t i o n  of the  P r o b l e m  in R e g i o n  3 

Case ao Here we encounter the following mixed problem: the function r is given on characteristic KH 
and ~ = 0 at ~ = U0o In variables s and q these conditions take the form 

s +  So 
~lq=~'= --U~ ~0+i* s ~ j ~ + q ~ q l ~ q = l = O  (4.1) 

Without loss of generality, we may assume 

( S o ) = 0 ,  o ' ( S o ) = 0 ,  o l ( l / S o ) =  UoCl/so 

F r o m  the  cond i t ion  on the  c h a r a c t e r i s t i c  KH we d e t e r m i n e  

col (s) : UoQs  

Then ,  s a t i s f y i n g  the  s e c o n d  of  cond i t i ons  (4.1) on l ine  GH 

(4.2) 

1/2 (~ - q % "  (q) + q,,)' (q) - o) (q) = o 

we d e t e r m i n e  w (q) = 0. Thus ,  the  p o t e n t i a l  r in r e g i o n  3 i s  g i v e n  by the  equa t ion  

= --Uon (4.3) 

C a s e  b. The  da t a  on c h a r a c t e r i s t i c  K/I, g iven  by the  equa t ion  q = ql = l / s 0 ,  a r e  ob t a ined  a f t e r  so lv ing  
the  p r o b l e m  in r e g i o n  2. L e t  t he  func t ions  wl~ and w ~ be o b t a i n e d  in so lv ing  the p r o b l e m  in r e g i o n  2. W i t h -  
out  l o s s  of  g e n e r a l i t y ,  we m a y  a s s u m e  tha t  the  func t ions  r and  w 1 in r e g i o n  3 a r e  such  tha t  

(4.4) 
(ql) = coo (ql) = - -UoClq l  3, ~ '  (ql) = ~o, (ql) = - -2UoClql  2 

o)1 (So) = o)10 (So) = 0 
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Since the function aJl~ sat isf ies the equation along the charac ter i s t ic ,  f rom which w l must  be de t e r -  
mined,by vir tue of the uniqueness theorem for l inear ordinary equations 

s 

(01 (s) : ~01 ~ (s) : s: I @1 (~) ~-3 d~ (4.5) 
So 

The second of conditions (4.1) gives a second-order  equation for determining w(q): 

t t o ) , ( t  l -~ ( t  - -  q2) r (q)  q -  q~o' (q)  - -  r (q)  -~  q: - -  t ~o1,, 

The general  solution of the corresponding homogeneous equation has the form 

o~ : D l q  § D 2 (q2 - t )  

The function 

(o : _q2 col (l / q) 

is a par t icular  solution of the inhomogeneous equation. 

Determining the constants D 1 and D 2 f rom (4.4), we find 

1/q 

o~(q) = UoC~q - -  UoCtq~ (q ~ + t) -- I ~h (~) ~-3d~ 
s~ 

(4.6) 

Thus, the solution of the problem has been found everywhere  in the regions of hyperbolici ty of the 
l inearized equations. 

5.  S o l u t i o n  o f  t h e  P r o b l e m  in  R e g i o n  4 

After solving the problems in the region of hyperbolici ty of Eq. (1.13) we must  turn to the mixed 
boundary value problem in the region of ellipticity. The potential ~ can be determined in region 4 if it is 
known on the semic i rc le  (L14), and if the derivative ~ =U 0 is given on the diameter  r = 0. As a resu l t  
of the uniqueness of the solution of this problem it is sufficient to sblve the Dirichlet  problem in a c i rc le  
with Dirichlet  data continued evenly onto the lower semicircle~ Here,  too, it is convenient to go over to 
the coordinates  s, k, which will be complex in region 4: 

s :  ~, s = ~ , +  i~ 

If • is the solution of Eq. (3.3), then the potential r in region 4 is re la ted  with the function X by the 

express ion 

q?= Re Z 
s q ~ - I  

Let a=  Re X ; then from (303) there follows the equationfor 

a: 2 o (A = ~ o~) (5.1) 

The solution of this equation is expressed  in t e rms  of the a rb i t r a ry  harmonic  function F of the 
var iables  X and ~: 

a = F -- ~tF~ 

As a resul t  of t ransformat ion  (3.2) the c i rc le  (4 -U0) 2 + ~72 _< C12 in the plane ~ goes over into the 
half-plane ~ ->0~ The c i rc le  (1.14) is mapped into the axis ~ = 0 so that the upper semic i rc le  goes over into 
the segment [ -1,  1] of the k-axis~ The continuation of the Dirichlet  data 

%=0 - / o  (x), ]/o ()OI < 
onto the entire axis is rea l ized in accordance  with the equation 
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The potential @ is expressed  in t e rms  of the harmonic  function F 

t (F -- ~tF~.) (5.2) 

Therefore the starting boundary value problem reduces to the following problem for the function F 
harmonic in the half-plane # -> 0 

F]~=o = (1 ~- )~)/0 (L), IF] <A121sp ,  Is] + oo (A1 ~ const) (5.3) 

The lat ter  inequality follows from the requi rement  that r be bounded~ The data on the axis # = 0 are  
expressed  in t e r m s  of the functions w and w 1 obtained in solving the problems in regions 2 and 3, because 

2 
/o (L) = ~ (0) (L) -- co~ ()~)) (0 • 2~ < l), f0 (~) = / o  (-- ~), (5.4) 

1o (~) = / 0  (~-~) 

It follows from (5.4) and (3.5) that (1 + X 2) f0(X) can be represen ted  as follows: 

(1 + ~)/o (~) = / ~  (z) § ~ *i (o) + %~/ '  (o) In (Z ~ + 1) 

Here,  f l (X)  is a function bounded on the entire X-axis. 

The solution of problem (5.3) is the function 

h(;)~; ~ ~ ,,(O)]n(~ § (~ + ~)~) F (~, ~) = ~ i (~ - ~)~ + ~ + r (0) (~ - ~)  + T (5.5) 
- - c o  

As it is easy to establish, this solution is unique co r r ec t  to unimportant t e rms  of the form b# + d ~  o 

Thus, the l inear problem has been completely solved. The equations obtained make it possible to 
calculate the physical  quantities u, v, and c in the double-wave region. At large absolute piston velocit ies 
U 0 a vacuum zone is formed in the neighborhood of the vertex of the piston angle Q. Then in regions 3 and 
4 the solution obtained will not be applicable, since in this case  it would be necessa ry  to solve the problem 
with a free boundary. The cr i t ical  piston veloci ty U 0 at which separat ion of the gas f i rs t  takes place is 
determined f rom the equation 

Q 2 + a ( t _ 7 ) q ~ ( V o ,  0 ) = 0  

At l e s se r  velocit ies the solution obtained descr ibes  the motion of the gas in f i rs t  approximation. 

The author thanks L. V. Ovsyannikov for his interest  and helpful advice. 
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